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An efficient one-pot microwave approach for the synthesis of novel [1,3]oxazolo[3,2-b][1,2,4]triazoles is
described.
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Scheme 1. [1,3]oxazolo[3,2-b][1,2,4]triazoles—retrosynthesis.
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The synthesis of novel heterocycles is of ongoing interest to the
medicinal chemistry and pharmaceutical communities because
heterocycles are ubiquitous in drugs and biologically active mole-
cules. Indeed, a recent review by Pitt et al. at UCB1 highlighted the
large number of potential heterocycles that have to be yet exempli-
fied. In our laboratories we recently had need to prepare
compounds based on the hitherto unprecedented [1,3]oxazol-
o[3,2-b][1,2,4]triazole heterocyclic system for one of our drug
discovery programmes. Herein, we describe an expedient and
versatile one-pot synthesis of the novel [1,3]oxazolo[3,2-b]
[1,2,4]triazole template 1 from 3,5-dibromo-1,2,4-triazole (2).
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In designing a synthetic approach, we anticipated that
[1,3]oxazolo[3,2-b][1,2,4]triazoles 1 could be constructed by way
of a tandem alkylation-displacement reaction of 3-bromo-1,2,4-tri-
azoles 3 and a-haloketones 4, via intermediate enolate 6 (Scheme 1).
Whilst alkylation of 1,2,4-triazoles typically occurs at N-1(2) rather
than N-4, reflecting the higher nucleophilicity of N–N systems,2 the
envisaged synthetic scheme also required triazole alkylation on the
N-1(2) nitrogen atom adjacent to the bromine atom. However,
dependent on the nature of the other ring substituent, alkylation
of triazoles 3 could occur predominantly (or exclusively) at the
nitrogen remote from the bromine atom, which would preclude
cyclisation. We consequently reasoned that the use of symmetrical
3,5-dibromo-1,2,4-triazole (2) would overcome such regiochemi-
cal difficulties, by forcing alkylation adjacent to a bromine
atom and allowing subsequent cyclisation, to afford the overall
ll rights reserved.
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strategy outlined in Scheme 2. The residual bromine atom could
then be removed (having functioned as a ‘dummy atom’) or
used for further functionalisation as appropriate. Furthermore,
98

Scheme 2. Reagents and conditions: (i) Base (see Table 1), 100 �C, microwave,
10–20 min.
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Scheme 3. Reagents and conditions: (i) H2, 10% Pd/C, Et3N (2 equiv), MeOH, (61%);
(ii) 4-FC6H4B(OH)2, Pd(PPh3)2Cl2, Na2CO3, DME, H2O 100 �C (67%).
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nucleophilic substitution is fast at the 5-position of 1-alkyl-1H-
[1,2,4]triazoles and very slow at the 3-position,3 therefore the
alkylation at N-1 was also anticipated to activate the triazole to facil-
itate the subsequent intramolecular nucleophilic substitution/
cyclisation.

To implement this strategy we first alkylated 3,5-dibromo-
1,2,4-triazole (2) to afford intermediate 7 and, in preliminary
experiments, were gratified to find substantial amounts of the
spontaneously cyclised [1,3]oxazolo[3,2-b][1,2,4]triazole final
product 9. Rapid optimisation of the reaction conditions trans-
formed this two-step scheme into a convenient one-pot reaction,
made even more expeditious by the use of microwave heating
(Scheme 2).

Detailed investigation revealed this tandem alkylation/cyclisa-
tion reaction (Scheme 2) to be versatile and tolerant of diverse
functionalities (Table 1). While a-haloketones 4a and 4b, activated
by an additional a-carbonyl group, underwent cyclisation to 9a,b
in the presence of DIPEA, reaction of a-haloketone 4c required
a stronger base, presumably to facilitate the formation of a less-
stabilized enolate intermediate 8.

In view of the apparent ease of the ring formation we further
investigated the scope of this procedure and were interested in
whether it could be extended to a-haloketones lacking further
Table 1
Synthesis of [1,3]oxazolo[3,2-b][1,2,4]triazoles5
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activation towards enolisation, using 3-bromo-2-butanone (4d) as
a model substrate. Thus, reaction of 3,5-dibromo-1,2,4-triazole (2)
with 4d in the presence of 3 equiv of DBU at 100 �C in a microwave
reactor gave 2-bromo-5,6-dimethyl[1,3]oxazolo[3,2-b][1,2,4]tria-
zole (9d) as the exclusive reaction product (60%). The regiochemistry
of compound 9d was confirmed by X-ray crystallography.4 Alkyl-
ation of 3,5-dibromo-1,2,4-triazole (2) with DBU and 4d at room
temperature allowed isolation of the intermediate ketone (7d,
R1 = R2 = Me) in 75% yield and subsequent microwave heating with
DBU at 100 �C afforded 9d as the exclusive product (69%). DBU is
required in this step to facilitate enolisation and subsequent cyclisa-
tion to the [1,3]oxazolo[3,2-b][1,2,4]triazole ring system.

The results in Table 1 indicate that the tandem alkylation/cyclisa-
tion reaction has a good generic scope and functional group compat-
ibility. A range of commercially available a-haloketone synthons
gave [1,3]oxazolo[3,2-b][1,2,4]triazoles substituted with trifluoro-
methyl, aryl, ester or amido groups in moderate to good yields.

Finally, the remaining ‘dummy’ bromine atom in compound 9d
was readily removed by catalytic hydrogenation6 to afford the ex-
pected [1,3]oxazolo[3,2-b][1,2,4]triazole 10. The typical reactivity
of the bromo group in 9d for further functionalisation was demon-
strated by Suzuki coupling with 4-fluorobenzene boronic acid
giving the corresponding 2-aryl[1,3]oxazolo[3,2-b][1,2,4]triazole
11 (Scheme 3).

In summary, we have developed an expedient synthesis of
[1,3]oxazolo[3,2-b][1,2,4]triazoles via a tandem alkylation/cyclisa-
tion reaction, exploiting a facilitating ‘dummy’ bromine atom. The
synthesis affords easy entry into a previously unreported fused
heterocyclic system and allows for subsequent elaboration of the
template via the 5-Br atom or other functionalities (such as esters)
of which the synthesis is tolerant.
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5.0 mmol) in MeCN (20 mL) were added DIPEA (1.75 mL, 10 mmol) and 3-
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was heated for 20 min at 100 �C in a microwave reactor (Biotage Initiator 2.5).
The solvent was evaporated and the residue was partitioned between CH2Cl2

(100 mL) and aqueous 1 M HCl (100 mL). The layers were separated and the
organic phase was evaporated to dryness. The crude product was purified by
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2.76 mmol). The mixture was stirred at room temperature for 10 min and then
heated for 5 min at 100 �C in a microwave reactor. Additional DBU (0.66 mL,
4.4 mmol) was added and the mixture was heated for 10 min at 100 �C in the
microwave. The solvent was evaporated, CH2Cl2 (25 mL) and 1 M HCl (25 mL)
were added to the residue, and the organic layer was separated. The aqueous
layer was extracted with CH2Cl2 (2 � 25 mL). The organic layers were combined,
dried and evaporated. The crude product was purified by silica gel
chromatography eluting with 0–70% EtOAc in isohexane to give the title
compound 9d as a white solid (284 mg, 60%). Mp 72–74 �C. 1H NMR (400 MHz,
CDCl3) d 2.34 (s, 3 H), 2.37 (s, 3 H). 13C NMR (100 MHz, CDCl3): 7.1, 11.0, 117.3,
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1H NMR (400 MHz, CDCl3) d 1.66 (3H, d, J = 7.2 Hz), 2.18 (s, 3 H), 5.43 (1H, q,
J = 7.2 Hz). 13C NMR (100 MHz, CDCl3): 14.9, 26.3, 63.7, 131.8, 139.3, 202.2. LC/
MS [M+H]+ 296/298/300. IR (solid): m 1715 cm�1.
5,6-Dimethyl[1,3]oxazolo[3,2-b][1,2,4]triazole (10). White solid. Mp 68–70 �C.
1H NMR (400 MHz, CDCl3) d 2.36 (3H, s), 2.37 (3H, s), 7.88 (1H, s). 13C NMR
(100 MHz, CDCl3): 7.2, 11.1, 117.0, 144.5, 154.0, 159.6. LC/MS [M+H]+ 138.
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